专利摘要:
本發明提供一種經標記的細胞的分離方法及其用途。更具體而言,本發明涉及一種使用螢光磁性奈米鑽石標記細胞的方法,並藉由該奈米鑽石的螢光或磁性分離該經該標記方法標記的細胞。
公开号:TW201321512A
申请号:TW100141978
申请日:2011-11-17
公开日:2013-06-01
发明作者:Jui-I Chao;Zhi-Yi Lien;Kuo-Chu Hwang
申请人:Univ Nat Chiao Tung;
IPC主号:C12N13-00
专利说明:
經標記細胞的分離方法及其用途
本發明有關於經標記細胞的分離方法及其用途。更具體而言,本發明涉及一種經螢光磁性奈米鑽石標記的細胞的分離方法以及其用途。
近年來,已開發多種功能性奈米材料應用於生物醫學領域,例如奈米級微脂體攜帶藥物用於癌症治療(Batist G,et al,J Clin Oncol. 2001 Mar 1;19(5):1444-54;Chen Y,et al,Mol Ther. 2010 Apr;18(4):828-34);奈米級磁石結合螢光進行動態追蹤與細胞標記(Maxwell DJ,et al,Stem Cells. 2008 Feb;26(2):517-24;Ruan J,et al,Nanoscale Res Lett. 2011 Apr 6;6(1):299);奈米級量子點(quantum dots)與氧化矽結合應用於生物造影(Erogbogbo F,et al,ACS Nano. 2011 Jan 25;5(1):413-23);奈米級量子棒(quantum rods)與磷脂結合利用於腫瘤造影與追蹤(Yong KT,et al,ACS Appl Mater Interfaces. 2009 Mar;1(3):710-9);以奈米碳管攜帶藥物用於癌症治療(Liu Z,et al,Angew Chem Int Ed Engl. 2009;48(41): 7668-72)等。
奈米材料在生物醫學領域應用上的限制包括難以在活體中追蹤奈米材料的定位與移動、量子棒等對生物具有毒性、以及奈米碳管(carbon nanotube)或富勒烯(fullerenes)等奈米等級碳系材料在生物相容性上仍有疑慮。
作為上述奈米材料的替代品,奈米鑽石(nanodiamond;ND)因為其優異的生物相容性以及相較於其他奈米碳系材料的較低細胞氧化壓力誘發性(即較低毒性),成為應用於生物醫學領域的奈米材料。奈米鑽石已證實可應用於多種細胞株中,而不會引起顯著的細胞毒性(Liu KK,et al,Biophys J. 2007 Sep 15;93(6):2199-208;Yu SJ,et al,J Am Chem Soc. 2005 Dec 21;127(50):17604-5;Vai jayanthimala V,et al,Nanotechnology. 2009 Oct 21;20(42):425103;Huang H,et al,Nano Lett. 2007 Nov;7(11):3305-14;Schrand AM,et al,Nanoscale. 2011 Feb;3(2):435-45)。同時,奈米鑽石對於胚胎發育中的細胞分裂、細胞分化與型態變化等細胞功能,不會引起顯著的異常(Liu KK,et al,Biomaterials 2009;30(26)L4249-59;Mohan N,et al,Nano Lett. 2010;10(9):3692-3699)。
就生物醫學領域的應用而言,奈米鑽石因為其本身之生物相容性、電化學特性與光學特性,具有多種優勢。例如經由對於奈米鑽石的化學修飾或物理吸附,可對化學藥劑、生物分子或治療藥劑可提供便利的結合平台。表面經功能化的奈米鑽石可結合螢光分子(Schrand AM,et al,Nanoscale 2010;3(2):435-445;Chang IP,et al,J Am Chem Soc 2008;130(46):15476-15481;Hens SC,et al,Diamond Relat Mater 2008;17(11):1858-1866);溶菌酶(Chao JI,et al,Biophys J 2007;93(6):2199-2208;Perevedentseva E,et al,Nanotechnology 2007;18(31):7);生長荷爾蒙(Cheng CY,et al,Appl Phys Lett 2007;90(16):3);DNA(Zhang XQ,et al,ACS Nano 2009;3(9):2609-2616);細胞色素c(Huang LC,et al,Langmuir 2004;20(14):5879-2884);蛋白質(Hartl A,et al,Nat Mater 2004;3(10):736-742);抗癌劑(Huang H,et al,Nano Lett 2007;7(11):3305-3314;Liu KK,et al,Nanotechnology 2010;21(31):14);抗原(Kossovsky N,et al,Bioconjugate Chem 1995;6(5):507-511);與聚乳酸(Zhang Q,et al,Biomaterials 2010;32(1):87-94)。
奈米鑽石可發射明亮的螢光且無光漂白(photobleaching)及光閃爍現象(Yu SJ,et al,J Am Chem Soc 2005;127(50): 17604-17605;Chao JI,et al,Biophys J 2007;93(6): 2199-2208)。以螢光分子化學性修飾或結合可對奈米鑽石導入螢光性質。經化學性修飾或結合的奈米鑽石包括醯胺化奈米鑽石(aminated-ND)、TAMRA-ND(醯胺化奈米鑽石結合反應性N-羥基琥珀醯亞胺功能化四甲基若丹明)等。螢光奈米鑽石(fluorescent nanodiamond;FND)可經由合成的質子束去轟擊奈米鑽石的輻射線損傷,製造晶格缺陷,以及氮晶格空位中心為螢光分子而於遠紅光發射(λem~600至800nm)。除了螢光性質之外,具有磁性性質的ND顆粒可利用於核磁共振成像(MRI)偵測。已有報導,石墨可於質子照射後導入鐵磁性(Esquinazi P,et al,Phys Rev Lett 2003;91(22):4)。同位素(15N)與(12C)離子植入(ion implantation),可經由產生sp 2 /sp 3 缺陷而對ND顆粒產生磁性(Talapatra S,et al,Phys Rev Lett 2005;95(9): 097201)。再者,磁性奈米顆粒可於礦物油與奈米鑽石的熱混合物中,經由含金屬化合物的熱破壞而固定於奈米鑽石的表面(Gubin SP,et al,Diamond Relat Mater 2007;16(11):1924-1928)。
已有報導提出利用微波發弧(microwave-arcing)方法,將鐵奈米顆粒(二茂鐵(ferroence))經由石墨烯層化學鍵結至奈米鑽石的表面,組成具有螢光與磁性之奈米鑽石,稱為螢光磁性奈米鑽石(fluorescent magnetic ND;FMND)(Chang IP,et al,J Am Chem Soc 2008;130(46):15476-18481)。也可以將磁性奈米鑽石(MND)經由聚丙烯酸的表面接枝進行化學性修飾,使螢光部分共價結合至表面,而使MND轉為FMND。使用於FMND的螢光成分,稱為螢光素O-甲基丙烯酸酯,在波長488nm發出明亮的綠色螢光,且在波長510至530nm收集該發射光。同時,FMND已顯示可被取入HeLa細胞。
雖然已有提出胞飲的ND簇集在細胞分裂中可被分開而且最終仍於細胞中保留單一ND簇集的模式理論,但是目前沒有報導關於將經奈米鑽石標記的細胞予以分離的方法,以及該經標記的細胞有無存活與繼代的能力。
本發明係針對上述問題提供一種經標記細胞的分離方法及其用途。更具體而言,本發明涉及一種經螢光磁性奈米鑽石標記的細胞的分離方法以及其用途。
本發明之一態樣,提供一種經標記細胞的分離方法,該方法包含下述步驟:提供螢光磁性奈米鑽石溶液;培養目標細胞;將該螢光磁性奈米鑽石溶液與該目標細胞共同培養,以令該螢光磁性奈米鑽石溶液中的螢光磁性奈米鑽石標記目標細胞;藉該經標記之目標細胞的螢光或磁性自該經共同培養的螢光磁性奈米鑽石溶液與該目標細胞中分離出經該螢光磁性奈米鑽石標記的目標細胞。
進一步地,係藉經該螢光磁性奈米鑽石標記的目標細胞與未標記者之螢光強度的不同,分離出經該螢光磁性奈米鑽石標記的目標細胞。於具體實施例中,係使用流式細胞儀分選出經該螢光磁性奈米鑽石標記的目標細胞。
較佳地,於使用該流式細胞儀前,復包括清洗該經共同培養的螢光磁性奈米鑽石溶液與該目標細胞,以收集經該螢光磁性奈米鑽石標記的目標細胞與未標記的目標細胞;以及藉由離心處理,以集中經該螢光磁性奈米鑽石標記的目標細胞與未標記的目標細胞。
於另一實施例中,係使用磁性裝置分離出經該螢光磁性奈米鑽石標記的目標細胞。較佳地,於使用該磁性裝置前,復包括清洗該經共同培養的螢光磁性奈米鑽石溶液與該目標細胞,以收集經該螢光磁性奈米鑽石標記的目標細胞與未標記的目標細胞;藉由離心處理,以集中經該螢光磁性奈米鑽石標記的目標細胞與未標記的目標細胞;以及將該螢光磁性奈米鑽石標記的目標細胞與未標記的目標細胞懸浮於具有緩衝溶液的容器中,俾該磁性裝置將該螢光磁性奈米鑽石標記的目標細胞吸附至該容器的管壁。
本發明之分離方法復可包括冷凍保存經分選之經該螢光磁性奈米鑽石標記的目標細胞。
本發明之又一態樣,提供一種經分離的細胞,該細胞係根據本發明的分離方法予以分離者。
進一步地,該經標記及分離的細胞係利用於細胞的標定、檢測、細胞的造影或追蹤、生物分子活性的分析及藥物活性的篩選。
進一步地,該細胞為動物細胞。該動物細胞包括癌細胞與幹細胞。
本發明使用螢光磁性奈米鑽石標記細胞,並藉由該螢光磁性奈米鑽石的螢光或磁性分離該經該標記方法標記的細胞,所得之經標記的細胞能繼續存活,且可被儲存和再培養,適用於細胞的標定、檢測、細胞的造影或追蹤、生物活性的分析及藥物活性的篩選等應用。
本發明將以下列實施例進一步具體說明,惟該等實施例之揭示不應視為任何限制本發明之意圖。 螢光磁性奈米鑽石(FMND)的製備
螢光磁性奈米鑽石(FMND)的製備係根據已公開之製造方法製備(Chang IP,et al,J Am Chem Soc 2008;130(46): 15476-18481)。具體地,經由微波-發弧方法製得由精純的奈米鑽石與鐵奈米顆粒(二茂鐵)所組成的磁性奈米鑽石(MND)。該等二茂鐵顆粒與奈米鑽石利用石墨烯層化學性的結合而形成MND。為了對MND導入螢光性質,將MND經由表面共價接枝聚丙烯酸與螢光素O-甲基丙烯酸酯,僵MND轉為FMND。以FMND處理細胞之前,係將FMND顆粒溶解於蒸餾去離子水(DDW)或磷酸緩衝溶液(PBS)中。 動態光散射(Dynamic Light Scattering,DLS)分析
為了測定溶解於DDW與PBS中之FMND的尺寸分布,製備濃度為0.5mg/ml的FMND於DDW或PBS中之溶液,將所製備的溶液以動態光散射(BI-200SM,Brookhaven Instruments Co.,Holtsville,NY)進行分析。在一具體懸浮液中,當雷射光束撞擊顆粒時,顆粒會散射某些雷射光。測得之數據以BIC動態光散射軟體(Brookhaven Instruments Co.)進行分析。散射光經時變化且藉由散射光的變異計算出平均顆粒尺寸。 細胞培養
HFL-1(ATCC #CCL-153)為衍生自高加索白種人胎兒的正常肺纖維母細胞。HFL-1細胞維持於DMEM培養基(Invitrogen Co.,Carlcbad,CA)。A549肺上皮細胞株(ATCC #CCL-185)為衍生自高加索白種人男性的肺腺癌。A549細胞係培養於RPMI-1640培養基(Invitrogen)。完全培養基含有10%胎牛血清(FBS)、100unit/ml盤尼希林與100g/ml鏈酶素。細胞係培養於37℃與5%CO2之潮濕培養箱(310/Thermo,Forma Scientific,Inc.,Marietta,OH)。 MTT分析
將細胞以1×104細胞/孔的密度接種於96-孔盤維持16至20小時。接著以含有或不含有FMND的完全培養基處理細胞24小時。之後,更換培養基且將細胞與0.5mg/ml的3-(4,5-二甲基-噻唑-2基)-2,5-二苯基四唑鎓溴鹽(MTT)(Sigma Chemical Co.,St. Louis,MO)於完全培養基中培養4小時。存活的細胞將MTT轉化為甲簪(formazan),於溶解於二甲基亞碸時產生藍紫色。於酵素連結免疫吸附分析中使用讀盤儀(VERSAmax,Molecular Dynamic Inc.,CA)於565nm測定甲簪強度。細胞存活力係將經FMND處理的細胞的吸收值除以未經FMND處理的細胞的吸收值相除而求出。 細胞生長分析
A549細胞以1×106細胞/10mm培養皿的密度接種於完全培養基中培養24小時。然後將細胞以含有或不含有FMND的培養基處理24小時。然後將經或未經FMND處理的細胞以新鮮培養基再度培養至10日且每2日計算總細胞數。 FMND的細胞螢光強度、顆粒複雜性與顆粒尺寸分布
細胞以7×105細胞/60-mm培養皿的密度接種於完全培養基中培養16至20小時。然後將細胞以含有或不含有10至100μg/ml的FMND的培養基處理0.5至24小時後,細胞以PBS清洗2次。經清洗的細胞以胰蛋白酶處理(trypsinized)後以1500rpm離心5分鐘收集細胞小粒(cell pellet)。將細胞小粒再懸浮於PBS中。為了避免凝集,將細胞懸浮液經尼龍篩網膜過濾。最後,樣品以流式細胞儀(FACSCalibur,Becton-Dickinson,San Jose,CA)分析。至少分析10,000個細胞。FMND的螢光於波長488nm激發且發射光收集於綠色光信號範圍。螢光強度、顆粒複雜性與細胞尺寸係由至少10,000個細胞藉由CellQuest軟體(BD Biosciences)分析。 免疫螢光染色與共軛焦顯微鏡技術
細胞培養於蓋玻片(cover slip)且於處理前於35-mm培養品維持16至20小時。經或未經FMND處理後,細胞以等張PBS(pH7.4)清洗後,以4%三聚甲醛於PBS的溶液於37℃固定1小時。之後,該蓋玻片以PBS清洗3次且以含有10%FBS、0.3%Triton X-100的PBS阻斷非特異性的結合位點1小時。β-tubulin與核分別以抗β-tubulin Cy3(1:100)與Hoechst 33258(Sigma Chemical Co.,St. Louis,MO)於37℃染色30分鐘。之後,樣品以配備有UV雷射(405nm)、Ar雷射(488nm)與HeNe雷射(543nm)的OLYMPUS共軛焦顯微鏡(FV500,OLYMPUS,Japan)鏡檢。 藉由流式細胞儀分離攜帶FMND的細胞
細胞以2×106細胞/100-mm培養皿的密度於完全培養基中培養24小時。以50μg/ml的FMND處理24小時後,細胞以PBS清洗2次。經清洗的細胞(包括經該螢光磁性奈米鑽石標記的A549細胞與未標記的A549細胞)以胰蛋白酶處理(trypsinized)後以1500rpm離心5分鐘收集細胞小粒(cell pellet)。將細胞小粒再懸浮於1至2ml的冰冷分篩緩衝液中,該緩衝液為於PBS中含有1mMEDTA、25mM HEPES與2%FBS。為了避免凝集,將細胞懸浮液經尼龍篩網膜過濾。螢光活化細胞分篩分析係以FACSCalibur分篩儀(Becton-Dickinson)進行。攜帶FMND的細胞於流式細胞儀中顯現綠色螢光強度,且經選擇予以分離。經分離的細胞收集於管壁塗布有10%FBS且內含15至20ml完全培養基的50ml離心管中。分離後,將細胞懸浮液於1000rpm離心10分鐘。然後將細胞小粒再度懸浮於完全培養基中。最後將細胞培養於37℃與5%CO2之潮濕培養箱或添加10%DMSO保存於液態氮中。 藉由磁性裝置分離攜帶FMND的細胞
細胞以2×106細胞/100-mm培養皿的密度於完全培養基中培養24小時。以50μg/ml的FMND處理24小時後,細胞以PBS清洗2次。經清洗的細胞(包括經該螢光磁性奈米鑽石標記的A549細胞與未標記的A549細胞)以胰蛋白酶處理(trypsinized)後以1500rpm離心5分鐘收集細胞小粒(cell pellet)。將細胞小粒再懸浮於1ml的PBS中,且轉移至1.5ml的eppendorf小管中。將該eppendorf小管置於磁架(magnetic rack)(Magna GrIP Rack,Millipore,Bedford,MA)至少3分鐘直到細胞小粒吸附至管壁。然後移除該懸浮液且將細胞小粒溶解於完全培養基。於eppendorf小管中之細胞懸浮液重複5次放置於磁架。最後將攜帶FMND的細胞培養於37℃與5%CO2之潮濕培養箱或添加10%DMSO保存於液態氮中。 電泳分析
為了比較親代細胞與攜帶FMND的細胞之間的總蛋白質分佈曲線,將細胞進行鈉十二烷基的硫酸鹽聚丙烯醯胺凝膠電泳法(SDS-PAGE)分析。經分離的攜帶FMND的細胞於含有0.5mMDTT、0.2mMEDTA、20mM HEPES、2.5mMMgCl2、75mM NaCl、0.1mMNa3VO4、50mMNaF、0.1%Triton X-100的冰冷細胞萃取緩衝液(pH7.6)中分解。對細胞懸浮液添加包括1μg/ml aprotinin、0.5μg/ml leupeptin與100μg/ml 4-(2-胺基乙基)苯磺醯基氟化物的蛋白酶抑制劑。細胞萃取物於4℃迴轉30分鐘。離心後,棄置小粒且上清夜蛋白質濃度以BCA蛋白質套組(Pierce,Rockford,IL)測定。以12%SDS-PAGE對等量的蛋白質(40μg/孔)進行電泳。電泳后,膠片以考馬斯藍(coomassie blue)緩衝液(0.1%coomassie blue、10%乙酸與45%甲醇)染色1小時。 統計分析
數據係以Student’s test分析,且p值<0.05認定為統計上顯著。 結果 FMND在蒸餾去離子水中與磷酸緩衝溶液中的尺寸分布
為了比較FMND的尺寸分布,於DDW或PBS中所製備之0.5mg/ml的FMND溶液,藉由DLS進行分析。如第1圖所示,粗線顯示FMND溶解於DDW。FMND於DDW的第1峰係由137.24至176.71nm,且第二峰係由805.18至1127.86nm。FMND於DDW中的平均顆粒尺寸為277.7nm。細線顯示FMND溶解於PBS。FMND於PBS的第1峰係由95.22至116.34nm,且第2峰係由272.58至333.04nm。FMND於PBS的平均顆粒尺寸為131.7nm。 FMND在HFL-1正常肺纖維母細胞與A549肺癌細胞中不誘發細胞毒性
為了測定以FMND處理人類肺細胞後的細胞毒性,使用HFL-1正常纖維母細胞與A549人類肺癌細胞。於經FMND處理後進行MTT分析。如第2圖所示,HFL-1經FMND處理(0.1至100μg/ml,24小時)的細胞未顯著降低細胞存活力。如第3圖所示,FMND顆粒於A549細胞中也未誘發細胞毒性。 FMND在肺癌細胞中不改變細胞生長能力
A549細胞以50μg/ml的FMND處理24小時後,再度培養至10日。每2日計算與分析總細胞數目。第4圖顯示FMND顆粒未改變A549細胞的細胞生長能力。 FMND在肺癌細胞中被取入的能力
為了檢測FMND於A549細胞中被取入的能力,將細胞以FMND處理(50μg/ml的FMND,24小時)且以共軛焦顯微鏡鏡檢。FMND顆粒在A549細胞中顯現綠色螢光於波長488nm,且於範圍510至530nm收集發射。β-tubulin蛋白質的細胞骨架以Cy3-標記的小鼠抗-β-tubulin染色。紅色螢光(Cy3)顯示β-tubulin存在於A549細胞中。核以Hoechst 33258染色而呈現藍色。如第5圖所示,自差異干擾之影像(differential interference contrast,DIC)觀察FMND溶解於不同的溶液並不影響於A549細胞中的取入能力。 藉由流式細胞儀偵測具有FMND的A549肺癌細胞
FMND於A549細胞中的螢光強度係藉由流式細胞儀測定。A549細胞以FMND處理(10至100μg/ml,24小時)後,以流式細胞儀分析。第6圖以定量的數據顯示FMND處理顯著地增加FMND於A549細胞中的螢光強度。A549細胞中FMND的顆粒複雜性,係藉由SSC-H(側向散射光)以流式細胞儀檢測。第7圖顯示FMND處理(10至100μg/ml,24小時)的定量數據,其中,顯示FMND處理顯著地增加FMND於A549細胞中的顆粒複雜性。然而,FMND並未改變FSC-H於A549細胞中的細胞尺寸分布(第8圖)。 藉由流式細胞儀與磁性裝置分離攜帶FMND的細胞
FMND的螢光與磁性性質,提供分別藉由具有分篩儀之流式細胞儀之FACS-純化功能與磁性裝而分離攜帶ND的細胞。為了分離攜帶ND的細胞,A549細胞以FMND處理(50μg/ml,24小時)且以具有分篩儀之流式細胞儀收集。第9A圖係說明分篩儀之R1閘(對照,綠色螢光-陰性)顯示親代細胞的區域。第9B圖係說明R2閘顯示綠色螢光性質的攜帶FMND的細胞(螢光活化)的區域。於R2區域的攜帶FMND的細胞係藉由具有分篩儀之流式細胞儀收集。 藉由流式細胞儀分離的攜帶FMND的細胞的分析
分離後,攜帶FMND的細胞立即於螢光與相對比顯微鏡之活細胞造影系統中檢測。與親代細胞相比較,經分離的攜帶FMND的細胞於螢光顯微鏡下顯著地顯現螢光(第10圖)。再者,將攜帶FMND的細胞再度培養24小時。於相對比顯微鏡下鏡檢細胞形態學與存活力(第11圖)。攜帶FMND的細胞之細胞形態、存活力與生長能力,與親代細胞類似(第11圖)。其次,藉由SDS-PAGE分析檢測攜帶FMND的細胞與親代細胞的總蛋白質表現曲線。在親代細胞與攜帶FMND的細胞之間,蛋白質表現圖形沒有顯著改變(第12圖)。此外,攜帶FMND的細胞中之綠色螢光強度可於再度培養24小時後藉由流式細胞儀偵測(第13圖)。 藉由磁性裝置分離的攜帶FMND的細胞的分析
A549細胞以50μg/ml的FMND處理或未處理24小時。攜帶FMND的細胞係藉由上文所揭示之磁性裝置分離。不同繼代之攜帶FMND的細胞之細胞形態、存活力與生長能力與親代細胞類似(第14圖)。此外,攜帶FMND的細胞的蛋白質表現圖形於SDS-PAGE分析中沒有改變(第15圖)。再者,攜帶FMND的細胞仍帶有FMND的螢光強度,且可藉由流式細胞儀(第16圖)與共軛焦顯微鏡(第17圖)偵測。 冷凍保存、再溶解與繼代分析
繼代之攜帶FMND的細胞的分離比率係將分離之攜帶FMND的細胞數目除以分離前的細胞總數目而求出。第1繼代的分離比率平均為75.89%且第4繼代得分離比率平均為60%(第18圖)。將第1繼代之攜帶FMND的細胞珠保存於液態氮中。將攜帶FMND的細胞再溶解後,細胞形態與存活力仍與親代細胞類似(第19圖)。第19圖中之箭號顯示正進行細胞分裂之圓形細胞。 產業上可利用性
根據本發明提供一種利用螢光磁性奈米鑽石標記細胞的方法,且可利用所標記之螢光性質與磁性性質分離經標記的細胞。根據本發明的方法所標記或分離的細胞於繼代培養或冷凍保存後,仍與親代細胞具有類似的細胞形態、存活力與生長能力。本發明所提供之方法,有用於生物醫學領域中之細胞的標定、檢測、細胞的造影或追蹤、生物分子活性的分析及藥物篩選等。
第1圖為FMND於DDW與PBS之尺寸分布圖;
第2圖為FMND對於HFL-1正常肺纖維母細胞之細胞存活力的效果圖;
第3圖為FMND對於A549肺癌細胞之細胞存活力的效果圖;
第4圖為FMND對於A549肺癌細胞之細胞生長能力的效果圖;
第5圖為藉由雷射掃描共軛焦顯微鏡於A549細胞中之FMND的偵測;
第6圖為FMND於A549細胞中之螢光強度圖;
第7圖為FMND於A549細胞中之顆粒複雜性圖;
第8圖為A549細胞以不同濃度之FMND顆粒處理後之細胞尺寸分布圖;
第9A及9B圖為藉由具有分篩儀之流式細胞儀之攜帶FMND的細胞的分離圖;
第10圖為藉由流式細胞儀分離後之攜帶FMND的細胞之螢光造影圖;
第11圖為親代細胞與攜帶FMND的細胞之間的形態學與存活力的比較圖;
第12圖為為親代細胞與攜帶FMND的細胞之間的總蛋白質表現曲線的比較圖;
第13圖為藉由流式細胞儀所分離之攜帶FMND的細胞的螢光強度的偵測圖;
第14圖為不同繼代藉由磁性裝置所分離之攜帶FMND細胞的細胞形態與存活力圖;
第15圖為親代細胞與不同繼代之攜帶FMND的細胞之間的總蛋白質表現曲線的比較圖;
第16圖為不同繼代之攜帶FMND的細胞的螢光強度的偵測圖;
第17圖為藉由雷射掃描共軛焦顯微鏡之攜帶FMND的細胞的螢光強度的偵測圖;
第18圖為不同繼代之攜帶FMND細胞的分離比率圖;以及
第19圖為親代細胞與再溶解的攜帶FMND的細胞之間的細胞形態與存活力的比較圖。
本案圖式為實驗數據圖,無代表圖。
权利要求:
Claims (12)
[1] 一種經標記細胞的分離方法,包括:提供螢光磁性奈米鑽石溶液;培養目標細胞;將該螢光磁性奈米鑽石溶液與該目標細胞共同培養,以令該螢光磁性奈米鑽石溶液中的螢光磁性奈米鑽石標記目標細胞;藉該經標記之目標細胞的螢光或磁性自該經共同培養的螢光磁性奈米鑽石溶液與該目標細胞中分離出經該螢光磁性奈米鑽石標記的目標細胞。
[2] 如申請專利範圍第1項所述之分離方法,係藉經該螢光磁性奈米鑽石標記的目標細胞與未標記者之螢光強度的不同,使用流式細胞儀分選出經該螢光磁性奈米鑽石鑽石標記的目標細胞。
[3] 如申請專利範圍第2項所述之分離方法,其中,經分選的細胞收集於管壁塗布有FBS且內含完全培養基的離心管中。
[4] 如申請專利範圍第3項所述之分離方法,復包括冷凍保存經分選之經該螢光磁性奈米鑽石鑽石標記的目標細胞。
[5] 如申請專利範圍第1項所述之分離方法,係使用磁性裝置分離出經該螢光磁性奈米鑽石鑽石標記的目標細胞。
[6] 如申請專利範圍第5項所述之分離方法,其中,於使用該磁性裝置前,復包括將該螢光磁性奈米鑽石標記的目標細胞與未標記的目標細胞懸浮於具有緩衝溶液的容器中,俾該磁性裝置將該螢光磁性奈米鑽石標記的目標細胞吸附至該容器的管壁。
[7] 如申請專利範圍第6項所述之分離方法,復包括冷凍保存經分選之經該螢光磁性奈米鑽石標記的目標細胞。
[8] 一種經分離的細胞,該細胞係由申請專利範圍第1項所述之分離方法予以分離者。
[9] 如申請專利範圍第8項所述之經分離的細胞,其中,該細胞為動物細胞。
[10] 如申請專利範圍第9項所述之經分離的細胞,其中,該動物細胞為癌細胞與幹細胞。
[11] 一種申請專利範圍第10項所述之經分離的細胞的用途,其係用於細胞的標定、檢測、造影或追蹤。
[12] 一種申請專利範圍第10項所述之經分離的細胞的用途,其係用於生物分子活性的分析及藥物活性的篩選。
类似技术:
公开号 | 公开日 | 专利标题
Liu et al.2015|Carbon “quantum” dots for fluorescence labeling of cells
Zhang et al.2013|Carbon-dots derived from nanodiamond: Photoluminescence tunable nanoparticles for cell imaging
Volkov2015|Quantum dots in nanomedicine: recent trends, advances and unresolved issues
Lien et al.2012|Cancer cell labeling and tracking using fluorescent and magnetic nanodiamond
Chao et al.2007|Nanometer-sized diamond particle as a probe for biolabeling
Schrand et al.2009|Nanodiamond particles: properties and perspectives for bioapplications
Hui et al.2010|Nanodiamonds for optical bioimaging
Wang et al.2016|Enhanced cell membrane enrichment and subsequent cellular internalization of quantum dots via cell surface engineering: illuminating plasma membranes with quantum dots
Huang et al.2018|One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging
Subbiah et al.2014|Fibronectin-tethered graphene oxide as an artificial matrix for osteogenesis
Reisner2008|Bionanotechnology: global prospects
He et al.2017|Large-area assembly of halloysite nanotubes for enhancing the capture of tumor cells
Nunn et al.2018|Fluorescent single-digit detonation nanodiamond for biomedical applications
TWI588258B|2017-06-21|經標記細胞的分離方法及其用途
Zhou et al.2019|Multifunctional luminescent immuno-magnetic nanoparticles: toward fast, efficient, cell-friendly capture and recovery of circulating tumor cells
Chen et al.2010|Quantum dot labeling based on near-field optical imaging of CD44 molecules
Moon et al.2008|Effect of nucleases on the cellular internalization of fluorescent labeled DNA-functionalized single-walled carbon nanotubes
Heng et al.2010|Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays
Fu et al.2017|Arginine-modified carbon dots probe for live cell imaging and sensing by increasing cellular uptake efficiency
US20150268229A1|2015-09-24|Metal-containing semiconducting polymer dots and methods of making and using the same
Gorbachevskii et al.2021|Fluorescent gold nanoclusters stabilized on halloysite nanotubes: In vitro study on cytotoxicity
Huang et al.2019|Water-dispersible fluorescent nanodiamonds for biological imaging prepared by thiol-ene click chemistry
KR102036711B1|2019-11-26|줄기세포-나노 복합체의 제조방법
Zhang et al.2015|Impacts of fluorescent superparamagnetic iron oxide |-labeled materials on biological characteristics and osteogenesis of bone marrow mesenchymal stem cells |
Khanal et al.2017|Nanotoxicity of nanodiamond in two and three dimensional liver models
同族专利:
公开号 | 公开日
TWI588258B|2017-06-21|
US20130130236A1|2013-05-23|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
EP1901067A3|2004-08-03|2009-05-13|On-Chip Cellomics Consortium|Cellomics system|JP6342285B2|2014-09-30|2018-06-13|シスメックス株式会社|粒子分析装置における異常判定方法、分析装置における精度管理方法、および粒子分析装置|
US20170354601A1|2016-06-13|2017-12-14|Huan NIU|Ion implantation of magnetic elements into nanodiamond particles to form composition for medical usage|
JP6925116B2|2016-10-28|2021-08-25|東京応化工業株式会社|継手部材、キャピラリーユニット及びスクリーニング装置|
法律状态:
优先权:
申请号 | 申请日 | 专利标题
TW100141978A|TWI588258B|2011-11-17|2011-11-17|經標記細胞的分離方法及其用途|TW100141978A| TWI588258B|2011-11-17|2011-11-17|經標記細胞的分離方法及其用途|
US13/471,768| US20130130236A1|2011-11-17|2012-05-15|Separation method of labeled cells and uses thereof|
[返回顶部]